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Abstract. A model for the frequency-distribution function of phonons in graphite that 
explicitly takes into account the presence of two-dimensional modes has been used to explain 
successfully (i) the recently observed temperature-dependent displacement-displacement 
autocorrelation function perpendicular to the basal plane (U:) in the temperature range 5- 
300K, (ii) the measured specific heat in the temperature range 10-300K and (iii) the 
observed second-order Doppler shift in the temperature range 293-743 K. It is found 
that the two dimensional modes play a dominant role over the entire temperature range. 
Calculations based on other anisotropic models for (U:) have also been made and compared. 

1. Introduction 

Recently, using x-ray reflection, the experimental values of displacement-displacement 
autocorrelation function, i.e. the mean-square vibrational amplitude, of bulk atoms of 
graphite normal to the basal plane have been reported in the temperature range 300- 
5 K [l]. As the temperature is decreased from 300 K, the mean-square vibrational 
amplitude, as expected, is found to decrease and at very low temperatures approaches 
a finite minimum value caused by zero-point vibrations of the atoms. 

Graphite, as is well known, is an outstanding example of a layered crystal; therefore, 
to interpret these results in terms of an isotropic three-dimensional Debye distribution 
function of phonons is physically unacceptable [l]. Even at very low temperatures, 
where essentially low-energy elastic modes are excited and dispersion is absent, the 
Debye approximation in such an anisotropic crystal is valid to the extent that the 
distribution function is of the type g(v) = AV* only over a limited range of v and not 
over the entire frequency range up to vmax = vD. Here v is the phonon frequency [2-41. 
Further, the constant A does not, therefore, correspond to the ordinary value 9N/ 
(kB6D)3 that comes about when all the total number of 3N modes are of v 2  type from 
zero to vmax(hvD = k g e D ) .  Hsieh and Colella [l], in analysing their experimental results, 
have used the three-dimensional isotropic Debye phonon-distribution function over the 
entire frequency range up to vD, and this distribution function has been used to evaluate 
mean-square displacements (MSD) in the temperature range 300-5 K. It was, therefore, 
natural that their calculated values of the MSD, particularly at low temperatures, were 
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higher than the experimental values, and the difference between the two was a maximum 
at 0 K. Further, using these results and assuming that, at low temperatures, the thermal 
vibrations are strongly anisotropic, they obtained the value of a equal to 0.89 for 
the bulk atoms of graphite. (The value of a less than one represents the degree of 
anisotropicity in the MSD of the atoms.) Such a result is quite unacceptable for the bulk 
atoms of graphite because the MSD perpendicular to the basal plane would continue to 
be anisotropic at all the temperatures and not merely at low temperatures. In other 
words, since the crystal structure of graphite does not change with increase in tem- 
perature and the force field under which a given atom vibrates continues to be as 
anisotropic as it is at low temperatures [5], the vibrations would continue to be anisotropic 
at all the temperatures. In fact, using three-dimensional isotropic Debye distribution 
function of phonons, they can just represent the approximate values of their observed 
MSD without giving any clue regarding the anisotropic nature of the observed MSD [6,7]. 

The elastic anisotropy of graphite is evident, besides not only from its crystal struc- 
ture, but also from the low-temperature specific heat variation. It is well known that the 
measured values of specific heat of graphite at very low temperatures T < 2 K varies as 
T 3  and at low temperatures, i.e. temperature range of approximately 15-80 K it varies 
as T 2  rather than T 3  [8,9]. In order to explain this behaviour of the specific heat, a few 
dynamical models for the phonon frequency distribution function for graphite have been 
suggested [2,3]. These phonon frequency-distribution functions can be used to study 
the anisotropic MSD of graphite. 

2. Mathematical formalism 

We suggest an anisotropic dynamical model for the phonon frequency-distribution 
function of graphite somewhat similar to that suggested by Krumhansl and Brooks [2], 
who solved the appropriate dynamical matrix for the normal-mode frequencies of a 
graphite atom vibrating parallel to the c axis. The phonon frequency-distribution func- 
tion has a region of linear v dependence. Recently Boato and co-workers [lo] have 
obtained a frequency-distribution function of phonons for the surface atoms of graphite 
vibrating perpendicular to the surface assuming the dispersion relation for the phonons 
suggested by Komatsu [3]. Their frequency-distribution function also carries a region 
where the dependence of g( v) with v is linear, indicating the planar nature of vibrations. 
Very recently similar models have been employed to study the various physical proper- 
ties of predominantly anisotropic two-dimensional [ 11, 121 and one-dimensional [13, 
141 solids. 

2.1. Dynamical model 

We suggest a dynamical model in which the elastic dynamical modes in a given direction 
i are given as follows: 

gi (v)  = AivT o s v s v o i  

= Bivj 
= O  U > v,i 

voj s 1, s v,i 

the values of Ai and Bi are determined by the conditions: 
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(i) the distribution function has to be continuous at v = voi; and 
(ii) the total number of modes should be equal to N .  The characteristic frequencies 

voi and vmi are determined using appropriate experimental data. 

2.2. Atomic mean-square displacement 

Mean-square displacement in a given direction i in terms of the phonon frequency 
distribution function is given as follows: 

Using si( v) from expression (1) in (2), we get 

where di = 8oi/8,i and Ai = (1/6: - S)-l .  

Here kB is the Boltzmann constant, and M is the mass of graphite atom, i = z gives 
the direction parallel to the c axis, i.e., i to the basal plane. i = x, y gives the direction 
perpendicular to the c axis, i.e. in the basal plane. 

On the basis of Krumhansl and Brooks (KB) model [2], the expression for MSD along 
the direction i is given as 

where ni is the fraction of modes in the direction i. 
Chen and Yiu [4], using the anisotropic phonon frequency-distribution function of 

graphite, derived by Komatsu [3], gave the following expression for the temperature 
variation of MSD of graphite atoms parallel to the c axis, i.e. i = 2: 

where F( 7') is a complicated function of temperature and for T > 42 K reduces to the 
following expression: 

(U:) = 291.08 M e V 2  F ( T )  (5) 

F(T)=3.344x10-2T-354.3T~-'-1.586X1O4T-3+1.585xlO7T-5+ .... (6) 

2.3. Second-order Doppler shift 

Making use of the suggested dynamical model, the expression for the temperature- 
dependent second-order Doppler shift (SOD), g T ,  which is related to thevelocity-velocity 
autocorrelation function is given as follows: 

' T , ~ = M C ( ~ B ~ , ~  - egi) [( 24 o i ) + $ / o  (e"-l> 
4eii - e3 @OJT x3 

dx 3 k B  
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Figure 1. Mean-square displacement of the bulk 
atom of graphite normal to the basal plane. 0 
represents the experimental points and the rest 

I are the calculated results based on  different 
models. --- KB model; - - - -  Chen and Yiu; - 
our model. -. .-and -. . .- show respectively 
the two-dimensio7al and three-dimensional con- 
tributions to MSD along the c axis based on our 
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2.4.  Specific heat 

In the present model, the total specific heat, Cv, takes the following form 

where Cvx, and Cvz denote respectively the specific heat of xy-modes and z-modes. The 
expression for any one of these modes is given as follows: 

cv = 2cvxy + cvz 

6R T 2  O d T  x3ex 
dx+ (8) 

6RT3 
CVI = 

3. Results and discussion 

We have calculated the MSD using Chen and Yiu's expression (5) in the temperature 
range 300-105 K. Below 105 K,  the calculated values of MSD become negative, which is 
unphysical. The calculated values in the temperature range 105-300 K are plotted in 
figure 1. As the temperature increases from 105 K, the MSD sharply increases from its 
low value up to about 180 K, beyond which the increase becomes somewhat slower. In 
most of the temperature range, the calculated values are widely different from the 
experimental values of Hsieh and Colella [l] .  This disagreement increases as the tem- 
perature is decreased from 300 to 105 K, as is also evident from figure 1. 

OOz = 7 K and e,,,, = 1000 K. Using these par- 
ameters and expression (4), we have calculated the MSD along the z direction and these 
are plotted in figure 1. The calculated values are in much better agreement with the 
experimental values than those given by Komatsu model over most of the temperature 
range. However, the values of MSD particularly at low temperatures, i.e. less than 60 K, 
are lower than the experimental values and the difference becomes a maximum at 
T = 0 K being about (-18%). At  high temperatures, also, the calculated values are 

For the KB model n, = 10 x 
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somewhat different from the experimental values and the difference is maximum at T = 
300 K about (+ 18%). 

Using expression (3), we find that e,,, = 60 K and Bmz = 840 K gives the calculated 
values of MSD that are in better agreement with the experimental values given by Hsieh 
and Colella [l] as shown in figure (1). The maximum deviation at T = 0 K is about -5% 
and at T = 300 K is about + 10%. In figure 1 we have also plotted the two-dimensional 
and three-dimensional contributions to ( u t )  based on our model. ( u f ) 3 D  is the con- 
tribution corresponding to first term of gi (v) ,  i.e. A i v f  when i = z of equation (l), while 
( ~ f ) ~ ~  is the contribution corresponding to second term, i.e. Bp, from equation ( l ) ,  to 
(uf). As is evident from figure ( l ) ,  the two dimensional, (24:)2D, contribution to the MSD 
is much larger than the three-dimensional, ( u t ) 3 D ,  contribution at all the temperatures. 
However the ratio (u t )2D/(u$)3D while at T = 0 K is about 25, at T = 300 K is about 3. 
The two-dimensional modes, therefore, predominate over the three-dimensional modes 
over the entire temperature range. 

We may also point out that for graphite, the linear temperature-dependence of 
(U;) does not set in up to 300 K. Even in the three-dimensional isotropic Debye model, 
the linear temperature-dependence comes in only when temperature becomes much 
greater than 8,. The value of OD quoted by Hsieh and Colella [l] is 572 K, which does 
not satisfy the condition for linearity in ( u t )  against T for graphite even at 300 K. The 
contributions of immediately higher-order non-linear term ( T 2 )  is about 61% of the 
linear term at 100 K which becomes about 21% at 200 K and about 10% at 300 K of the 
corresponding linear terms. Only at the temperature 700 K, does the contribution of 
higher-order term become equal to 2%. 

Making use of expression (7) with eo, = 60 K and e,, = 840 K, the second-order 
Doppler shifts along the c axis, 8T,r ,  have been calculated at various temperatures. In 
figure 2(a) are shown the calculated values for the second-order Doppler shift relative 
to its value at 293 K, AsOD, in the temperature range 293-743 K and they are compared 
with the corresponding measured results at 293, 473 and 743 K [7]. The agreement 
between the two is good. In figure 2(6) are shown the contributions of two dimensional 
and three-dimensional modes to 8T,z at various temperatures in the temperature range 
0-743 K. As is evident from the figure, the contributions of two-dimensional modes are 
predominant over the entire temperature range. 

In figure 3 the calculated values of the specific heat of graphite are shown in the 
temperature range 10-300 K,  using 8 D  = 572 K and our model for all the dynamical 
modes. In our model we find that the characteristic parameters eOxy = 60 K and e,, = 
2600 K yield the calculated values of the temperature-dependent specific heat in agree- 
ment with the experimental values [8], which are also plotted in the figure. As is evident 
from figure 3, the calculated values of the specific heat using OD = 572 K are very much 
different from the experimentalvaluesin the temperature range 40-300 K, thecalculated 
values being much larger than the corresponding experimental results. In the same 
temperature range, the calculated values based on our model are in much better agree- 
ment with the corresponding experimental data. Also plotted in figure 3 are the con- 
tributions of z-modes and xy-modes from our model and, as expected, we find that z- 
mode contribution is dominant (80%) over most of the temperature range. It may be 
noted that if one takes the (4) values of the specific heat given by 6 D  = 572 K to represent 
the z-mode contribution only, the calculated values will still be higher than the cor- 
responding experimental results over the temperature range 60-200 K and much lower 
than the experimental results at lower temperatures. Any model to represent the con- 
tribution of xy-modes that may bring the theoretical contribution nearer the exper- 
imental results at low temperatures will yield much higher values of specific heat at 
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Figure 2. (a )  Comparison of the calculated temperature-dependent second-order Doppler 
shift perpendicular to the basal plane in graphite relative to its value at 293 K with the 
experimental results in the temperature range 293-743 K. ( b )  contributions of two-dimen- 
sional (--. .-) and three-dimensional (--. . .-) modes to the z-component of second-order 
Doppler shift in graphite in the temperature range 0-743K. 

higher temperatures. This would result in large disparity between the experimental and 
theoretical values at higher temperatures. 

From our study, we conclude that the observed anisotropic mean-square dis- 
placement of bulk atoms of graphite can be explained using a model that explicitly takes 
into account the presence of two-dimensional planes in graphite. The model also yields 
consistent values for the temperature-dependent second-order Doppler shift and specific 
heat. Further, the effect of two-dimensional modes is found 20 be dominant at all the 
temperatures. 
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Figure 3. Specific heat of graphite. 0 represents 
the experimental points. ---- denotes the 
specific heat using Bo = 572 K and ~ rep- 
resents the specific heat using our model. Also 
shown are the z- andxy-mode contributions to the 
specific heat represented by -.- and -..- 
respectively. 
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